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A theoretical and experimental study is carried out for the problem of the wall effect 
experienced by a fluid body moving with a constant speed along the axis of a vertical 
circular tube filled with a highly viscous liquid. In the theoretical study the body is 
limited to being either spherical or cylindrical and an optimization process with least 
squares is used to write the no-slip condition on the tube wall. Comparisons between 
the hydrodynamic and kinematic behaviour of a rigid, liquid and gaseous body are 
established. Furthermore, from an experimental investigation, based upon a fine 
visualization technique and rising-speed measurements, the respective limits of 
validity of the calculations have been found in the case of an air bubble. Information 
concerned especially with the shape of this bubble, and the hydrodynamic field that it 
generates, is given for the whole domain of the bubble and tube diameter ratio 
ranging from no wall influence to maximum wall influence. 

1. Introduction 
Drops and bubbles in fluids play an important part in numerous industrial processes 

and consequently a great deal of theoretical and experimental work has been done in 
this field, see, for example, Gal-Or, Klinzing & Tavlarides (1969), Harper (1972), 
Grace (1973), Wallis (1974), Grace, Wairegi & Nguyen (1976) and Van Wijngaarden 
& Vossers’ (1978) recent report on the Euromech Colloquium 98 concerned with gas 
bubbles in liquids. 

From these investigations, it appears that there is a particular shortage of data 
concerning drops and bubbles suspended in very highly viscous liquids, even though 
this phenomenon is illustrated in many applications : some techniques of extraction 
and transportation of oil products; glass bubbling and fluidization; etc. On the other 
hand, it is found that the wall effect is rarely takeninto account, although the drops or 
bubble behaviours, as well as the hydrodynamic field they generate, may be appreci- 
ably influenced by the container even when the wall is not in the near vicinity. 

Consequently in this present work we consider as a basic investigation the problem of 
a single bubble? rising along the axis of a vertical circular tube filled with a quiescent 
liquid of high viscosity. In  these conditions, the viscosity effects are dominant com- 
pared with inertia and surface-tension effects; this regime is often called the ‘ Hada- 
mard regime’. Thus, in an unbounded medium, the shape of the bubble would be a 
sphere and its terminal speed would be given by the Hadamard (191 1) or Rybczyliski 

t The size of the bubble is assumed to be sufficient for an internal motion to develop so that 
the bubble behaves effectively as 13 fluid body and not as a solid body. 



340 M .  Coutanceau and P. Thizon 

(1 91 1) formula. This is still true when the tube diameter is very large with respect to  
the bubble diameter. However, as the tube diameter becomes smaller, the bubble 
behaviour is modified: the drag that is experienced becomes relatively greater and 
the bubble’s shape becomes longer and, in a limiting case, nearly ‘ cylindrical’. Hence 
we have what is usually called a ‘ cylindrical bubble ’. 

It is important to know this wall effect. Nevertheless, such effects have been little 
studied particularly when they remain moderate and in the case of the Hadamard 
regime. Uno & Kintner (1 956) proposed an empirical velocity correction factor in terms 
of the bubble and tube diameter ratio and of the surface tension of the liquid, but the 
fluids tested experimentally were of relatively low viscosity (y < 0.25 P) and then the 
regime was different (for example, the shapes of the bubbles were oblate ellipsoids, with 
axes perpendicular to the tube axis, and not spheres or prolate ellipsoids as they would 
be in the Hadamard regime). From a theoretical point of view, Haberman & Sayre 
(1 958) assumed that, the drop or bubble retained a spherical shape and they gave a first 
approximation of the corresponding creeping flow (some experimental results were also 
presented for a drop). Satapathy & Smith (1961) substituted the cylindrical boundary 
with a spherical one, coaxial with the bubble and tangential to the tube in the equatorial 
plane. Collins (1967) examined the wall effect induced by a tube in the case of large 
spherical cap bubbles rising in a perfect suspending liquid. Hetsroni, Haber & 
Wacholder (1970) and Ho & Leal (1975) considered drops moving axially in a Poiseuille 
flow: the former from a theoretical point of view, the latter experimentally. Cylindrical 
drops and bubbles have been more extensively studied: Dumitrescu (1943), Davies 
& Taylor (1950), Nicklin, Wilkes & Davidson (1962) and Tung & Parlange (1976) 
considered the case of long air bubbles or ‘slugs’ in water or in low-viscosity liquids and 
did not take viscosity into account. On the other hand, Goldsmith & Mason (1962, 
1963), White & Beardmore (1962) and Zukoski (1966) presented useful results in 
the case of bubbles in a viscous liquid. 

No one seems t o  have examined the problem for the whole domain ranging from no 
wall influence to maximum wall influence (cylindrical bubble); it appears to us well 
worth investigating. 

2. Dimensional analysis 
I n  order to draw a comparison between the behaviour of drops and bubbles moving 

through different fluids, it is necessary to make a dimensional investigation. Here we 
suppose that the two adjacent fluids are Newtonian, incompressible and isothermal. 
I n  this case, an analysis of the phenomena shows that the terminal velocity Uo of the 
bubble is a function of the gravitational acceleration g, the dynamic viscosities y e  
andy{, the densities pe and pi of the external and internal phases, the surface tension g, 
the equivalent diameter d, (i.e. the diameter of the sphere having the same volume as 
$he drop or bubble) and the distance L to the wall. Because A p  = pe-pi plays a 
dominant part in the motion of the suspended phase, it is often considered instead of 
pi, and we can therefore write 

fi (uo, 9 ,  P e ,  ye, Pi, Ap, g, de, L)  = 0. (2.1) 

From the Waschy-Buckingham theorem, it is possible to simplify the investigation 
by grouping these nine parameters in only six dimensionless groups without losing 
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any information. If (as in the case of solid bodies) U,, de, pe are chosen for the normal- 
ization of the other parameters contained in the relation (2.1),  these dimensionless 
groups are found to be: 

and, putting h = d e / L ,  equation (2.1) becomes 

The Reynolds number Re, the Froude number Fr and the Weber number We 
characterize the importance of the inertial forces in comparison with the viscosity 
forces, the gravitational forces and the interfacial forces respectively. However, this 
formulation does not appear to be very appropriate because the terminal speed U,, of 
the drop, which is usually one of the unknown variables of the problem, is contained 
in all of the three groups: Re, Fr We. A more convenient set of dimensionless groups 
can be obtained from the measurable physical properties of the suspending fluid (p, 
and pe) with, in addition, the gravitational acceleration g instead of U,, de,  p,. Thus 
new groups appear such as the dimensionless velocity U$ and diameter d:, 

(2.4) 

(2.5) 

which contains only the physical properties of the phases. So equation (2.1) can be 
written as 

Another suitable set of groups is also often used : they are the Reynolds number Re, 
the Etvos number Eo ( = Apgdz/u) representing the ratio between the gravitational 
and the interfacial forces and the Morton number Mo( =  PO-^), so we have 

f4 (Re, Eo, Mo,h,*,  A 
Pe Pe 

(2.7) 

It is to be remarked that the various sets of non-dimensional groups introduced in 
this analysis are not independent, so for example 

Re = U$ dz, Eo = Po-I, Mo = PO-3 = We3 Fr-I Re-4. 

On the other hand, in the case of gas bubbles suspended in liquids the ratio Ap/pe may 
be taken as unity and the viscosity ratio piIpe tends towards zero and therefore loses 
any importance. Thus, the general equations (2.3), (2.6), (2.7) are simplified; for 
example the last is reduced to 

f,(Re, Eo, Mo,  A )  = 0. (2.8) 

t The group U:, dp, P =Po3 was also proposed by Wallis (1974) in his synthesis work con- 
cerned with drops and bubbles in an infinite medium. 
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Furthermore, when one or more of the retarding forces are negligible compared with 
the others, a lesser number of groups is sufficient to represent the phenomenon pro- 
vided they are suitably chosen. For instance, as White & Beardmore (1962) mentioned, 
when the inertial forces are negligible, the Poiseuille number Ps (Ps = U,peu,/Apgd,2 
= Fr/Re), representing the relative importance of the viscous and gravitational forces, 
may be considered as the group involving U,, and in addition, when the interfacial 
forces are negligible, no other group is required other than A. 

3. Theoretical study 
As limiting cases we consider successively a spherical and a cylindrical single drop 

G t  with a radius R (for the sphere) or RE (for the cylinder) in a uniform rectilinear 
motion with the speed U,, along the axis of a vertical and infinitely long circular tube 
T. This tube, of radius R,, is filled with a liquid which lies at rest away from the drop. 
We assume that the two fluids are incompressible, isothermal and Newtonian and that 
the Reynolds numbers Re, and Re,of the corresponding flows, exterior (E,)  and interior 
(Ei) to G ,  are sufficiently low so that the flows are creeping and the Stokes simplifica- 
tion is justified. The surface-tension effects are also neglected. The motion is referred 
to a frame which is fixed to the drop and whose polar axis z coincides with the tube 
one. So, in this frame, the drop appears to be a t  rest, whereas the tube and the fluid 
in a far-away cross-section are moving with the velocity U,. 

All the quantities are non-dimensionalized by choosing as reference units : the speed 
U,, the radius R (or RE) ,  the density p, of the external fluid. So here, for a simple 
formulation of the problem, the following parameters are introduced: 

Considering the hypotheses proposed, the equations to be satisfied by the velocity 
fields of E,  and Ei are 

curl3 U = 0,  div U = 0. (3.119 (3.2) 

The boundary conditions can be specified as follows: 
(i) No slip on the tube wall. 
(ii) Uniform (equal to unit) velocity distribution far away from G .  
(iii) A t  the drop surface: (a)  continuity of the tangential velocity components; 

( b )  cancellation of the normal velocity components; ( c )  continuity of the tangential 
components of the stress; (d )  continuity of the normal components of the stress. 

3.1. Case of the spherical drop 

3.1.1. Formulation of the problem 
First, let us consider the case of the drop as a fluid sphere. Then for convenience the 

motion is referred to a spherical co-ordinate system r,  6, q5 (figure 1 a)  that moves with 
the drop and whose origin is taken at  its centre. 

So the boundary conditions at  the drop surface (iii) take the form : 

(3.3) ) 
U,(1,@ = Gi(l,@, v , ( 1 , @  = 0, V,(W = 0, 

E?,9Jl,@ =E?f?a(l,@, FWe(1,W = FWi(1,@, 

t The air bubble will be one particular case of this theoretical investigation. 
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FIGURE 1. (a) Spherical reference co-ordinate frame. (b) Delimitation of the domain 
concerned in the calculation. 

where U, and U, stand for the radial and tangential components of the velocity field 
and Fw and F,, for the radial and tangential components of the stress (including the 
one due to the pressure field); the indices e and i refer to quantities exterior to the 
fluid sphere and interior to it respectively. 

On the other hand, the flow being axisymmetric and meridian (U+ = 0 ) ,  the equa- 
tion of continuity (3.2) involves the existence of a stream function $(r ,  0) which is 
related to the velocity components by: 

with 
t=cosO and s=sinO. 

So that the motion equations (3.1) and (3.2) may be replaced by the equivalent one: 

L2 $(r,  0) = 0, (3.5) 
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where the differential operator L is defined by 
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a 2  1 -t2 a 2  L = - + - -  
ar2 r2 at2' 

A general solution of the equation (3 .5 )  expressed in terms of products of r and t 
functions seems to have been proposed for the first time by Sampson (1891). In this 
case taking into account the symmetries of the two flows ( E ,  and Ei) and eliminating 
the terms involving singularities on the flow axis and a t  the origin, this solution gives 
respectively : 00 

$, = x C,*(t) [a,r-n+l+ b,r -n+3+~,rn+d,rn+2] ,  (3 .6 )  
n=2,4, ... 

where a,, b,, c,, d,, en, f, represent arbitrary coefficients to be determined by the 
boundary conditions and C;*(t) the Gegenbauer polynomial of degree n and order 
- 4 which is related to the Legendre polynomial by 

The corresponding expressions of the radial and tangential velocity components 
can be obtained by substituting expressions (3.6) and (3.7) in therelation (3.4) and, in 
turn, the radial and tangential components of the stress by substituting these velocity 
components in the Newton's constitutive equation; but for brevity they are not given 
here. Hence we can express the boundary conditions on the drop surface. These 
conditions involve certain relations between the arbitrary coefficients a,, . . . , f, of ( 3 . 6 )  
and (3 .7 ) ,  and so we obtain 

(n- 1) a, + (n - 3) b, - nc, - (n + 2)  d, = -me, - (n + 2)fn) 
a ,+b ,+c ,+d ,  = 0, en+fn = 0, I 

1 
(n2 - 1)  a, +n(n - 2 )  b, + n(n- 2) c, + (n2 - 1 )  d, = - [n(n - 2 )  en + (n2 - 1) f,], 

w 
(3.8) n 2 + n - 3  n 2 - 3 n -  1 

n n -  1 
- (1  + n) a, - b, + (n  - 2)  c, + dn 

for n = 2, 4, ..., co. Equation (3.8) verifies that the motion is governed only by the 
Poiseuille number, as we could expect, c.onsidering the hypotheses formulated. On the 
other hand, two other equations (obtainable from the boundary conditions (i) and 
(ii)), have to be added to the five equations of the system ( 3 . 8 ) ;  we now have in fact, 
for each value of n, a set of seven equations for the determination of only six unknown 
coefficients. The extra equation arises because the shape of the bubble has been 
apriori fixed. But, the shape of the bubble results from the motion itself and should be 
determined by the last equation of the system (3.8). Up to now this complex problem 
does not seem to have been solved in this case; only Hetsroni et al. (1970) gave a first 

signifies that the corresponding term must be taken into account for 
n = 2only. 

t The symbol [ 
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approximation when a Poiseuille velocity variation is imposed far from the drop. 
However, we hope to be able to do it later using the numerical least-squares technique 
that we present in this paper; some calculations are being carried out in this direction. 

For the present work, the drop shape being supposedly spherical, the last equation 
of the system (3.8) is dropped (except for n = 2). But, at the end of the calculation 
(when the coefficients will be determined numerically), we shall evaluate the difference 
between the two corresponding normal components of the stress (interior and exterior) 
so as to verify the validity of the hypotheses made. Indeed, though in the case of a 
drop the spherical shape is compatible only with an unbounded external medium or 
a medium limited by a spherical boundary, it will be verified that, if the first term 
(n = 2) of the series (3.6) and (3.7) is dominant, this spherical shape constitutes also 
a very good approximation for the drop within a tube. This will be also confirmed by 
experiment. 

Now, considering the first four equations of the system (3.8), it is possible to express 
a,, c,, en, fn in terms of b,  and d, for instance, and so we obtain 

I a, = - [2n - 3) b, + 2 ( ~  - 1) d , ] / K ,  

C ,  = - [ 2 ( ~  + 1 )  b,  + (2n + 1)  d , ] / K ,  

en = -f, = w[(2n-3)b,-(2n+l)d,]/K, 
where 

K = 2wf2n-1 .  

For the particular value n = 2, taking into account the above relations (3.9), one can 
see that the last equation of the system (3.8), which is the only one to contain gravity 
(through Ps), gives: 

1 
12b2' 

Ps = - (3.10) 

This relation (3.10) expresses the balance between the buoyancy and the drag forces;? 
it provides the terminal speed of the drop at  steady state when the volume of the drop 
and the physical properties of the fluids are known. 

For the convenience (automatization and minimal storage) of numerical calcula- 
tions using electronic computers, we write the velocity components in the following 
linear forms 

(3.11) I m m 

U, = - AjFAj(r,  t ) ,  C', = C AjFBj(r, t) ,  

U, = - AjFCj(r , t ) ,  UOi = AjFDj(r , t ) ,  

j = l , 2 .  ... j = 1 , 2 ,  ..- 
m m 

j = 1 , 2 ,  ... j=l, 2 ,  ... 
putting 

A2.n-1 = b2n, A, = 

t It is known (Happel & Brenner 1965; Coutanceau 1971)  that the non-dimensional drag 
experienced by an arbitrary shaped body, moving with e constant velocity U,, is given (for the 
creeping regime) by 4nb, (b, being the coefficients of the expansion (3.6)); so, for aspherical body 
of radius R, the dimensional drag is T =4n,ueb, RU, end the balance between the buoyancy 
and drag forces gives: $nRaApg = 4np6b, RU,, so consequently Pa = 1/12b,. 



(3 .12)  

At this stage in the formulation of the problem, all the boundary conditions on the 
surface of the fluid sphere (except the condition of continuity of the normal compo- 
nents of the stress for the terms corresponding to  an index n > 2)  are satisfied by the 
hydrodynamic field given by the relations (3.1 1 )  and (3 .12 ) .  So the available coeffici- 
ents Aj must satisfy only the remaining boundary conditions ( i )  on the tube wall and 
(ii) far from the drop. 

But with the selected frame, the no-slip condition on the tube wall cannot be 
strictly expressed hy means of a finite number of terms of the series expansions (3.11) 
and, in addition, these expansions cannot represent the real flow in the whole domain 
(i.e. inside the infinitely long tube) because they imply infinite velocities for r -+ co. 

From now on we shall use a special technique (Bourot 1969; Coutanceau &. Thizon 
1978) based upon three proposals. 

First proposal. The experiment (figures 1 1  to 14) shows that, beyond a certain 
relatively short distance L from the equatorial plane, the influence of the drop 
becomes negligible,t and thus the real external boundary T of the flow (i.e. the wall 
of the infinitely long tube) is replaced by a physically equivalent boundary B entirely 
situated at  a finite distance from the origin: namely a part of the lateral surface of 
the tube completed by two perpendicular cross-sections situated a t  this axial distance 
L. The distance L is a function of the sphere-to-tube radius ratio h and of the a priori 
fixed accuracy in this estimation of the perturbation in terms of velocity: thus it may 
be considered that the perturbations of the free stream below 0-OOlU, are physically 

t In the moving reference frame the velocities take again approximately the unit value of the 
free stream, whereas in a fixed frame the fluid is practically at rest. 

346 M .  Coutanceau and P. Thizon 
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negligible, so that the two terminal cross-sections of the boundary B may be placed a t  
the distance L corresponding to this approximation and consequently, on the bound- 
ary B ,  the non-dimensional velocity may be taken equal to unity (figure 1 b ) .  

Second proposal. The coefficients A j  are determined ‘optimally ’ by minimizing the 
integral (evaluated on B )  of the quadratic deviation between the imposed boundary 
data and the values provided by the trial functions given by the relations (3.11) and 
(3.12). Hence, imposing on B the velocity equal to the unit free-stream velocity, we 
must have 

(Ur,)imposed = t and (UeJimposed = -8, 

and according to the relations (3.11) the trial velocity components are 
m 

m 

So the integral is written as 
r 

I = J [( -X Aj FA, - t ) 2 +  (z AjFBj+s)2]ds ,  
r j  i 

(3.13) 

where r represents the outline of the meridian section of B (i.e. a rectangle, 2R, in 
width and 2L in length, or, with lengths normalized by R, a rectangle: 2 f A, 2L f R A )  
and ds a differential arc element of r. Then, the minimum of I corresponds to the 

From substituting in (3.13) the expression of F A  and F B  given by (3.12), we find 
that the coefficients Aj  are solutions of the following symmetric linear system: 

m r  r 

5 J Aj(FAiFAj+FBiFBj)ds= - (tFA,+sFB,)ds, i = 1,2, ..., a. (3.14) 
j -1 ,2 ,  ... r Jr 

Third proposal. For the numerical calculations, the series expansions are limited to 
a finite number N of terms and consequently the values of the summation indices i 
and j are also limited to N .  The number N is chosen according to the tolerated devia- 
tion from the imposed boundary conditions. 

3.1.2. Numerical algorithms and parameters 

For the numerical calculations, the Gauss-Jordan elimination method has been used 
for solving the system of equations (3.14) and the integrals have been evaluated apply- 
ing the Simpson algorithm. So, considering that the Gegenbauer polynomials are 
obtainable by a simple recurrence law, the programming was very easy: the various 
cases were treated changing the parameters A, A L  (representing the I? rectangle 
elongation LIR,) and N only. 

In  this way, the coefficients A j  have been determined for regularly spaced h values 
ranging from zero (unbounded medium) to  0.8; accordingly A L  was varying from 2 to 
2.7 and N from 2 to 18. Now the coefficients are known all the hydrodynamic character- 
istics can be evaluated, e.g. velocity, stress, pressure and vorticity fields, and also the 
I2 F L U  107 
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drag wall correction factor Res: i.e. the ratio between the drags experienced by the 
drop in bounded and unbounded media respectively, 

Res = Ps,/Ps 

if Ps, represents the Poiseuille number for an unbounded medium, namely: 

Ps, = 
w +  1 

2(6w+9)’ 

On the other hand, as a test, it has been possible to estimate the precision with which 
the imposed boundary conditions have been satisfied effectively. In fact, it was found 
that the no-slip condition on the tube wall and the matching of the flow with the 
uniform velocity field in the two perpendicular cross-sections at  a distance L from 
the equatorial plane have been satisfied with a very good precision, since in the most 
unfavourable calculated case ( A  = 0.8) the average of the deviation was less than 1 yo 
(forexample, about lO-5and 10-4respectivelyforA = 0.25andA = 0.50with N = 16). 
Furthermore by increasing the value of N ,  it  is possible to reduce this deviation 
notably. But, generally, 1 yo is a sufficient precision because the experimental results 
are not known with a better approximation. So, as it has also been previously shown 
by Bourot (1969) who proposed several useful types of application and then by Bourot 
& Sigli (1970) and Coutanceau (1971) who successfully calculated with the same 
technique other hydrodynamic fields in the domain of the Stokes simplification, this 
least-squares method appears to be very well adapted to treat these sorts of problems. 

Remark. In  this particular case, where the boundary conditions are given on two 
surfaces that are co-ordinate surfaces of two different frames (namely the spherical 
and cylindrical reference frames), it would have been possible to solve the problem 
using the technique proposed by Haberman & Sayre (1958). This consists in match- 
ing the two series expansions obtained (for the stream-function and velocity com- 
ponents) in the spherical and cylindrical co-ordinate frames respectively: the first 
satisfying exactly the condition on the sphere, the second the condition on the tube. 
But, as the number N of terms retained for the series in the calculations increases, 
the calculation development rapidly becomes complex. Moreover, as has been shown 
by Coutanceau (1968, 1971)’ the numerical results thus obtained represent the real 
flow in a satisfactory way only in the domain D’ near the sphere (so the drag calcula- 
tion is correct) but not in the whole ‘useful’ domain D (i.e. the whole domain perturbed 
by the sphere) and this more markedly as the sphere-to-tube radius ratio A increases. 
On the other hand, it appeared that, with this technique proposed by Haberman & 
Sayre, increasing the term number N makes the flow representation more accurate 
in D’ but does not extend this domain D‘t and consequently does not permit any 
matching with the uniform flow. The authors do not mention this disadvantage. 

So, the leaat-squares method appears to be not only more suitable because it gives 
more complete results but also because (and this is very important) it  allows the cal- 
culation of two-dimensional or axisymmetric flows with obstacle and confining walls 
of variousshapes (Bourot & Coutanceau 1971 ; Bourot 1976; Coutanceau & Dominguez 
1979); it  is not even necessary for numerical calculations to know the boundary 

t In fact, we have shown (Coutanceau 1971) that the domain D‘ is practically represented by 
a sphere concentric with the spherical body and tangential to the tube in the equatorial plane; 
outside this domain D’, the method proposed by Haberman & Sayre gives rise to singularities. 
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FIGURE 2. Cylindrical reference co-ordinate frame. 

equations: point-by-point data are sufficient. However, the matrix of the system 
associated with the least-squares method tending to be ill-conditioned, the calculations 
must be done with sufficient precision (double precision). 

When general solutions of the motion equations are not known in the form of series 
expansions analogous to the expressions (3.6) and (3.7) (for example, non-axisym- 
metric three-dimensional flows) the method ' of reflection ' (Brenner & Happel 1958 ; 
Happel & Brenner 1965) can be used. But, in the case of a drop in a circular vertical 
tube, it  is pointed out by experiment (Goldsmith & Mason 1963; Coutanceau & Thizon 
1 9 7 8 ~ )  that the drop itself adjustsitspath along the tube axis and so the flow is always 
axisymmetric. 

3.2. The c u e  of the cylindrical drop 
Now we suppose that the drop takes the shape of a cylinder closed at both ends, its 
length being very long compared with its radius RE; the motion is then referred to a 
cylindrical co-ordinate system moving with the drop: p, 4, z (figure 2) and RE and 
Uo are considered as the length and velocity reference units respectively. Then we put 

and 

In this case, because of the particular form of the velocity field (Up = U+ = 0) the 
stream function is not introduced and then the above boundary conditions (men- 
tioned at  the beginning of $3)  are not sufficient to determine the problem; we 
complete them by imposing the continuity condition for the flows inside and outside 

12-2 
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FGURE 3. Velocity distribution along the exterior flow axis. Theoretical results for a spherical 
body when A = 0 (indefinite medium) and A = 0.25; - , w = 0;  --- , w =  1; ---, 
w -+ 03. 
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FIGURE 4. Velocity distribution in the equatorial plane of the exterior flow. Theoretical results 

- - - , w  + al. 
for a spherical body when A = 0 (indefinite medium) and A = 0-25: -, fjJ = 0; - - - ,  fjJ = 1; 

the bubble respectively. So the flow rate must be, on the one hand, equal to zero 
across any perpendicular section of the drop: 

and, on the other hand, must be constant across any perpendicular cross-section of the 
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B'IQURE 5. Velocity distribution on the body boundary. Theoretical results for B spherical 

body when A = 0.25, 0.50, 0.75: - - -, w = 1 ; -, w -+ Q). 
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FIQURE 6. Vorticity distribution on the body boundary. Theoretical results for a spherical 
body when h = 0.25. 0.50, 0.75. -, w = 0 ;  ---, w = 1; , w + w .  

tube and equal to the flow rate of the unit uniform velocity field prevalent far from the 
drop : 

The axial and tangential components of the velocity field that verify all these 
conditions are 
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1 
DEN = ~ n - ( ~ % w - ~ s + ~ ) + w  --(I -A%)Z,  

A, 

and the terminal speed U, of the drop is given, in an non-dimensional form, by t,he 
Poiseuille number : 

The main features 

(3.15) 

3.3. Numerical results 

(velocity, vorticity, pressure, streamlines, wall correction factor) 
of these two types of flows ‘sphere-tube’ and ‘cylinder-tube’ and their evolutions 
with h have been completely calculated for three values of the viscosity ratio w 
corresponding respectively to the cases of a bubble (w-+oo) ,  of a particular drop 
(w = 1) and of a rigid obstacle (w = 0) (Coutanceau 1971; Thizon 1977); as examples, 
figures 3 to 9 illustrate the main results. 

Several interesting properties have been pointed out, in particular in the case of a 
spherical obstacle : 

(a) For a given viscosity ratio w ,  the extent of the domain disturbed by the sphere, 
evaluated in sphere radius R, becomes smaller as h becomes greater (i.e. as the sphere 
is bigger compared with the tube) and, for a fixed value of A ,  the sphere causes less dis- 
turbance in the external medium as w is greater: the perturbation generated by a 
bubble is smaller than that generated by a solid sphere. For example, in the case when 
h = 0.50, on the flow axis and a t  a distance of one radius from the sphere, the relative 
velocity difference (U,- U) /U,  is only 12 yo for the bubble, 16 o/o for the drop and 
24 yo for the rigid sphere. At this same distance, for the bubble (w  -+ m), this relative 
difference with U, is 4 yo for h = 0.75, 12 yo for h = 0.50, 29 yo for h = 0.25 and 50 yo 
for h = 0 (unbounded medium); i t  would be 69 % for w = 0 (rigid sphere) and h = 0 ! 
The effect of concentration of the perturbation due to the wall presence is remarkable. 

( b )  In  the case of fluid spheres, surface velocities exist that are increasing from the 
pole to the equator and that increase with h and w (see table 1). It is to be noticed 
that this equatorial surface velocity is relatively important compared with U, and 
that the difference between the spherical bubble and drop cases decreases when h is 
increasing: its value is 44 % for A = 0.25, 33 % for h = 0.50 and 21 % for h = 0-75. 

(c) The vorticity on the surface of the sphere increases as w decreases and h increases; 
in all cases, it is equal to zero on the pole and reaches a maximum at  the equator. On 
the contrary with the surface velocity, the relative differences, corresponding to the 
variation with w ,  increase as h increases (table 2). 

(d )  The wall correction factor Res decreases notably when w increases (table 3); 
consequently, the difference between the drags experienced by identical solid, liquid 
and gaseous spheres are exaggerated by the wall effect. So, for a spherical obstacle 
(with radius R) in an unbounded medium, the drag being given by 

T, = 6npe RU, 2Pe + 3Pi 
3 ~ e  + 3 ~ i  

(3.16) 

It is seen that keeping the other parameters constant the drag experienced by a 
spherical bubble is 8 of the drag experienced by a rigid similar sphere; whereas, in 
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A ( =  RIR,) 
A r > 

unbounded 
0 0.25 0.50 0.75 

a( = cL,/CLi) medium 

1 (drop) 0.2577, 0*42U0 0.84U0 2.19U0 
00 (bubble) 0*50U, 0*75U0 1.26U0 2-78 U ,  

TABLE 1. Velocity on the equatorial circle of a spherical fluid body moving 
axially inside a tube. 

h 

W 0 0.25 0.50 0.75 

0 (rigid) 1.50 2.94 8.02 39.45 
1 (drop) 1.25 2.12 4.37 12.65 
00 (bubble) 1.00 1 *50 2.53 5-56 

TABLE 2. Vortioity on the equatorial circle of a spherical body moving 
axially inside a tube. 

A 
L 

I > 

W 0,25 0.50 0.75 

0 (rigid) 1.9796 5.950 40.7 
1 (drop) 1.7315 4.120 20.3 
00 (bubble) 1.5398 3.223 16.2 

TABLE 3. Wall correction factor Res for a spherical body moving axially inside a tube. 

the case of a flow, confined when the sphere diameter is half the tube diameter 
( A  = 0.50), the ratio between the corresponding drags (bubble and rigid sphere) is 
0.36, so approximately 4 only: then, for the same apparent weight, the bubble moves 
about 2.8 times more rapidly than the same rigid sphere ! 

Our theoretical values of Res are in very good agreement with those resulting from 
the application of the Haberman & Sayre technique and, also, with the simplified 
formula that these authors proposed, but, for the latter, the agreement is satisfactory 
only for values of h smaller than 0-5. It must be noticed here that, for h > 0.5, this 
simplified formula of Haberman & Sayre gives values which are smaller than those 
given by the complete calculation and which deviate more and more when h increases, 
So in the case of a solid sphere and for h = 0.50 and 0.75 this deviation is respectively 
2% and 23 yo. Consequently, for solid spheres when h > 0.5, if great accuracy is re- 
quired, the Haberman & Sayre simplified formula is not suitable. However, in the case 
of drops and bubbles, this formula represents the phenomenon in a slightly more satis- 
factory way than the exact calculation because, as we will show below, when the bubble 
loses its spherical shape, the drag that it experiences becomes effectively smaller: so, 
for a gas bubble and  A = 0.60, the theoretical values obtained for Res are 5.20 and 
5.12 using the exact calculation and the simplified formula respectively, whereas the 
measuredvalue is 3.3; forh = 0.75 the values are, in thesameorder: 16.2,14.4and 4.7. 

Finally, as has been mentioned in 53.1.1, it is interesting to evaluate, on the surface 
of the spherical bubble and drop, the relative importance of the difference between the 
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FIQURE 7. Wall correction factor Res in function of A. Theoretical results for a spherical 

body: -, w = 0 ;  ---, w = I ;  - - -, w -3.03. 

external and internal radial components of the stress, corresponding to the terms of the 
series associated with n > 2, compared with the principal term n = 2. Indeed, it is to 
be remembered that the equality of these stress components cannot occur because 
of the a priori assumption of a spherical shape for the fluid body. We found that this 
stress difference equals zero at the equator and is a maximum at the pole; for w --f 00 

(and w = 1)  the magnitude of this maximum is 2 yo (2  yo), 12 yo ( 1  1 yo), 26 yo (24 yo) 
respectively for A = 0.25, 0.50 and 0.75. 

In  the case of the cylindrical body, similar conclusions (to those drawn above) 
concerning the influence of the parameters A, and o have been deduced; for example, 
figure 9 shows the velocity distribution in a cross-section for A = 0.75 in the cases of 
a bubble, a drop and a rigid cylinder. On the other hand, some comparisons have 
been established with the spherical bubble (figure 10). 

4. Experimental study 
It is now necessary to determine, by means of experiment, the respective ranges of A 

where the theoretical results satisfactorily represent the real flow, i.e. the ranges of 
the h values, where the wall effect on the shape of the fluid body is either negligible 
(spherical shape) or a maximum (cylindrical shape). Thus, we have undertaken this 
experimental study in the case of an air bubble, in order to determine the shape of the 
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FIGURE 8. Streamline patterns of the exterior and interior flows. Theoretical results: 
--- , spherical drop ( w  = 1)  ; -, bubble ( w  + m). A = 0.50. 

3 

2 

1 

- 1  

-2 

-3 

0 0.3 0.6 0.9 1 .2 
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FIGURE 9. Velocity distribution in a right section interior and exterior to the body. Theoretical 

, w = o .  results for a cylindrical body when h = 0.75: - , w + 00; --- , w = 1; 

bubble, and also its rising speed, the domain disturbed by its presence, the hydro- 
dynamic field it generates and the influence of the bubble-to-tube radius ratio h on 
these characteristics. 

4.1. Some preliminary notations 
Since the bubble can be, as it will be seen, variously shaped, we introduce the following 
notations: h stands for the ‘equivalent’ radius ratio, i.e. the ratio between the 
equivalent radius R of the bubble (radius of the sphere of the same volume) with the 
tube radius R T ; t  A E  stands for the ‘equatorial ’ radius ratio, i.e. the ratio between the 
equatorial radius RE of the bubble (the radius of its equatorial cross-section) with 

t Hence h can take values superior to unity; it tends towards infinity when the bubble 
volume is increasing infinitely. 
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FIGURE 10. Velocity distribution in the equatorial plane of the exterior flow. Comparison 
between the theoretical results : - , spherical bubble ; - - -, cylindrical bubble. 

rlR 

the tube radius R,; A, stands for the ‘axial’ radius ratio, i.e. the ratio between the 
‘axial radius’ RA of the bubble (i.e. the half-length of the bubble) with the tube 
radius R ,. 

Except when it is differently specified, the dimensionless characteristic groups: 
Reynolds number, Morton number, Poiseuille number, etc., are defined with the 
‘equivalent’ diameter d, of the bubble. 

4.2. The experimental principle and the main elements ofthe apparatus 

A single air bubble rises freely along the axis of a transparent vertical circular tube 
whose length (120 cm) is great compared with its diameter so that the end perturba- 
tions are negligible. In order to obtain very low Reynolds numbers (Re < 0.20) the 
tube is filled with a transparent liquid with a high viscosity: we used a silicone oil 
whose viscosity is about 300 P at  20 “C and whose surface tension amounts to 21 dynes/ 
cm. The bubbles are produced with a piston moving in a jacket situated axially a t  
the lower part of the tube; the air volume is determined by limiting the stroke of the 
piston with an adjustable stop. Reproducible results were obtained : the differences 
observed on the volumes of 40 bubbles were < 2 yo. In addition, this air volume is 
accurately measured, by means of a sensitive flowmeter (based upon the translation 
of a soap film in a graduated tube) connected with the top end of the experiment 
tube, and so it has been possible to calibrate the system of bubble production and to 
observe the volume evolution during the rising of the bubble. 

Visualization of the flow pattern was obtained by illuminating with a powerful 
arc-projector a thin (1  mm) meridian section of the tube after fine ( c 20,um) bright 
particles of magnesium have been suspended uniformly in the liquid and by photo- 
graphing the paths of these particles, in a perpendicular direction, when the bubble 
crosses the illuminated zone, i.e. about half-way up the tube. In order to compensate 
for the refraction effect, the tube is set in the axis of a square glass tank full of a trans- 
parent liquid, the refractive index of which is the same as that of the tested liquid. 
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Our apparatus allows two sorts of photographs: one with a fixed camera, the other with 
a camera moving in the same direction and with the same velocity as the bubble. In  
the latter, the camera is placed at, the top of a vertical hydraulic jack and the motion 
is activated by a system of balance-weights and regularized by the flow of oil across 
narrow tubular holes drilled in the piston of the hydraulic jack. For the determination 
of the bubble boundary, a better definition is obtained with an illumination directed 
along and facing the optical axis of the camera. 

The speed of ascent of the bubble is deduced from the indication provided by a pair 
of photocells, situated outside the tube in the lighted plane (10 cm distant one from 
the other) and conneoted to an electronic counter (the precision of which is 0.01 s): 
the crossing of the shadow cast by the bubble, in front of the photocells, is recorded 
by the counter. Subsequently, the speed of the camera is measured by another pair 
of photocells excited by an independent light and is adjusted to that of the bubble by 
means of the balance weights. 

Regularly spaced values of the ratio A, between the bubble equivalent radius and 
the tube radius, are obtained by experimenting with three tubes of different diameters 
(3, 4.4, 8.2 cm) and by varying the bubble volume. Our experiments are made with 
bubbles of greater volume than those used previously: the volume varies from about 
1 to 40 om3. Thus, a large range of h values is provided (0.15 Q h Q 1-17) with suitable 
bubble sizes for a good visualization. Moreover, the overlapping of zones of h resulting 
from the use of tubes of various diameters allowed us to verify the similarity of the 
phenomena. 

We make sure that the terminal velocity of the bubble is reached when the photo- 
graphs were taken so that the flow is steady in the moving reference frame. 

During our experiments, we observe that the bubble path is rectilinear and axially 
centred; this fact has been previously mentioned by Goldsmith & Mason (1963). 

All our experiments correspond to Re < 0-20, Mo 21 lo8, 173 Q Eo Q 655. 

4.3. Experimental results 
4.3.1. General 

As examples three types of photographs are given. On one hand, for A = 0.52 and 
A = 0.65 the flow pattern is presented in a fixed frame (figures 11, 13) and in a moving 
frame (figures 12, 14); the white dashes are part of the trajectories described by the 
illuminated particles during the time of exposure. It appears that the flows are sym- 
metrical about the equatorial plane; therefore, for the calculations the use of the 
Stokes simplification is justified. 

' Viewed ' in a fixed frame, the bubble appears to be ' accompanied ' by a pattern of 
closed streamlines and the domain disturbed by its passage is clearly visible, but, 
since flow is unsteady, it is too difficult to deduce information about the velocity field. 
In the moving frame, however, when the synchronization of the rising speeds of the 
camera and of the bubble is good (this is effectively verified on figures 12,14), the bubble 
is at rest and the flow is steady, and so it is possible to determine the velocities to good 
accuracy by measuring the lengths of the dashes; the special technique used for this 
measurement has been previously described by Coutanceau &. Rouard (1977). 

On the other hand, figure 15 shows (for A = 1.17) a bubble illuminated by a light 
facing the camera so that the inconvenient reflections on the bubble air-oil interface 
are eliminated and then it is easier to determine its shape precisely, but, the 
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FIQURE 11. Plow visualization of a bubble rising axially in a tube when 
A= 0.52 (with a fixed camera). 

visualization particles are no longervisible. In  the case of this large bubble (22.5 cms in 
volume) in a small tube (3  cm in diameter) a slight asymmetry exists analogous to 
that noticed by Goldsmith & Mason (1962) : the base is somewhat flattened. This is 
probably due to the superficial tension phenomenon. However, in our experiments 
this asymmetry was always less than 1 % and we did not take it into account. 
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RWRE 12. Flow visualization of a bubble rising axially in a tube when 
A = 0.52 (with a moving camera). 

4.3.2. Evolution of the air bubble shape in function of h (figures 11-17) 

From our experiments it appears that the bubble retains a spherical shape (within 
an accuracy of 1 yo) for values of h up to 0.20. But, for a given tube, the increase of the 
air volume causes a distortion of the bubble, which then progressively losesitsspherical 
shape; at first its configuration can be considered to a good approximation as an 
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FIGURE 13. Flow visualization of a bubble rising axially in a tube when 
h = 0.65 (with a fixed camera). 
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FIGURE 14. Flow visualization of a bubble rising axially in a tube when h = 0.65 
(with a moving camera). 
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FIGURE 15. Visualization of the shape of a bubble rising axially in a tube when A = 1-17. 
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I 1 
X = 0.76 

FIQURE 16. Evolution with A of the shape of an air bubble: -, real bubble; -, 
ellipsoid with the same axis ; - - -, cylindrical shape. 

363 

0 0.3 0.6 0.2 1.2 1.5 
x 

FIGURE 17. Evolution with h of the equatorial and axial radius ratios of the real bubble. 
Experimental results: - 0-, h ~ ;  -0-, h ~ .  Limiting theoretical curvea corresponding to a 
cylindrical bubble : - - - , All,, = 0.66; - - --, AAtlm = 1*53Aa+0*22. 
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ellipsoid whose large axis is parallel to the direction of the flow. This ellipsoidal shape 
is maintained (within 2 %) up to about h = 0.60. Beyond this value, the outline of 
the bubble differs more and more from that of the ellipsoidal shape and in the end it 
tends towards the cylindrical shape, being concentric with the tube and bounded 
approximately with two spherical caps at both ends. For the greatest value of h used 
( A  = 1.17) it  was found that the maximum deviation between the real bubble shape 
and this schematic cylindrical one is localized at  8 2: 15" (figure 16) and is limited 
to 7% only; even if the spherical caps were replaced by suitable spheroidal caps, the 
approximation would be almost perfect. 

In order to characterize the bubble deformation we consider (in figure 17) the evolu- 
tion of A, and A,; we remember that they represent respectively the ratios of the 
equatorial and axial radii of the bubble with the tube radius. 

&t is seen that, for h < 0.20, the evolutions are linear, but, whenhisincreasing, i.e., 
for a given tube, the bubble volume is increasing, the increase in equatorial radius of 
the bubble becomes smaller as the increase in axial radius becomes larger. Moreover, 
as the bubble becomes more nearly cylindrical its rising speed as well as its equatorial 
radius tend towards the limits UOlim and hElim respectively; these two features were 
also observed by Goldsmith & Mason (1962) and Zukoski (1966) for bubbles end by 
Ho & Leal (1975) for drops. We found that, for the air-silicone-oil system, the limit 
AElim is reached practically (within 1%) when h = 1 ;  hElim = 0.66. This value is in 
good agreement with that (0.667) given by the empirical formula proposed by Zukoski 
where the surface tension is taken into account. It also agrees with the theoretical 
relation (3.15) for the cylindrical air bubble in which Ps, is calculated using our 
measured value UOlim and the surface tension is not taken into account. It appears 
that for h > 1 the bubble behaves dynamically as a cylindrical bubble and that in 
our experiments the surface-tension effects remain negligible (less than 1 yo) even in 
the more favourable cases. 

For h = 1-17 the experimental 'axial radius' is also found to be the same (within 
1-5 yo) as the axial radius hA1,, of the cylindrical bubble of the same volume having 
the terminal velocity UOlim (and therefore an equatorial radius equal to 0-66) and, 
schematically, bounded by two spherical caps. Consequently, from about h = 1.15, 
he shape of the real bubble can be represented, to a good approximation, by hElirn = 

0.66 and hAlirn = 163h3 + 0.22. 
Using a technique of least-squares curve fitting, we have represented the outline of 

the meridian section of the bubble with an equation, for any value of A ,  in the form 

u 

where r represents the non-dimensional polar radius normalized with the equatorial 
radius RE, t the cosine of the colatitude 8 and Pn the Legendre polynomial of degree 
n. Taking into account the symmetry of the bubble about the equatorial plane, only 
the even values of n are to be retained. The coefficients a, and the equatorial radius 
RE are expressed in terms of h by means of analogous developments; then we put 

(4.3) 
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FIGURE 18. Wall correction factor Res in function of h for a bubble rising axially in a tube: 
-0-, experimental results; - - -, limiting curve (ResL = 8.17h8) corresponding to a cylindrical 
bubble; - - -, theoretical results for a spherical bubble. 

The introduction of the variable t h h  allows us to represent the whole domain of h 
including A = 00. It is then possible to take into account the corresponding limiting 
values of a, and A,:? 

u,(co) = in- 1, u,(Co) = - 2n+ i n  [ ( n ;  - f/ ! !I2 , n = 2 ,4 ,  ..., 
2 

hB(m) = 0.66, J 
where (n - 1) ! ! = 1 x 3 x 5 x . . . x (n- l), n ! ! = 2 x 4 x 6 x . . . x n. 

The numericalvalues of the coefficients /3n,i and xi have been determined by limiting 
the series expansions (4.1) and (4.3) to five terms and the series expansions (4 .2 )  to 
12 terms; these values are given in table 4.$ In these conditions a satisfactory approxi- 
mation is obtained: in all cases, the maximal deviation from the real bubble is situated 
at  8 N 10" and, for h < 1.17, it  remains less than about 2 yo. As has beenmentioned 
above, when h > 1- 17 the bubble can be considered as a cylindrical bubble and then 
determined by hElin, and AAlim. A t  this stage, if we know the injected air volume and 
the tube radius R, (and consequently the equivalent radius R and the radius ratio A),  
we can calculate the outline of the meridian section of the bubble for any value of A .  

4.3.3. The drag wall correction factor 

It is to be remembered that the wall correction factor for the drag (Res) has been 
defined as the ratio between the drag T experienced by the bubble in the tube and 
the drag T, experienced by a spherical bubble (having the same volume) in an 

Res = TIT, = Uo,/Uo, unbounded medium : 

t The limiting values of a, and h~ are determined from the fact that, when h + 03, the bubble 
is an infinitely long cylinder whose radius normalized with the tube radius is h,,,, and whose 
meridian boundary equation is r = (1 - P)-*. 

$ The limiting condition, for h + 03, has been imposed and each coefficient of expansion 
depends slightly on the other coefficients. 
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where Uo, represents the rising speed of the bubble in an unbounded medium. Hence 

uoa = P e  gRa/3~e.  

The evolutions of the theoretical and experimental values of Res are given in figure 18: 
the two curves practically coincide up to h = 0.20 where the difference is of about 1 yo 
only; beyond this value they deviate increasingly as h increases, the experimental 
curve always being below the theoretical one, so, with an equivalent volume, the real 
bubble takes a more profiled form and experiences a lower drag; its rising speed is all 
the more increased. 

Consequently the deviation between the drags experienced by the real bubble and 
the solid sphere of equal volume is still greater than those mentioned in the theoretical 
analysis concerned with the spherical bubble. On the other hand, with the deduction 
of Haberman & Sayre (1958), it seems confirmed that the limiting value A,, corres- 
ponding to the beginning of the deviation between experimental and theoretical 
results, is smaller as the viscosity ratio u is greater: then for w = 13 and 200 these 
authors found A, = 0.65 and 0.53 respectively,? while for w --f co (i.e. the gas bubble) 
we have already found a deviation of 5 yo for h = 0.40 and 20 yo for h = 0-50. 

To represent the variation, with A ,  of the coefficient Res, we propose the following 
empirical expression: 

with 

1 
1 + Q(thh) 

Res = 

N 

n=1,3, ... 
Q(thh) = - 2 y,P,(thh). 

(4.5) 

In  the range h Q 1.17, Res is obtained, within an accuracy better than 1%, by 
limiting (4.6) to five terms only (so N = 9); the corresponding values of the coefficients 
yn (n = 1,3, . . ., 9) are given in table 4. 

Beyond this domain ( A  > 1.17) it is possible to use the relation appropriate to the 
cylindrical bubble whose radius normalized by the tube radius is hEli,,.,; then we have 

Thus for the case where the superficial tension effects are negligible, when Am,,,, was 
found to equal 0.66, we obtain Res = 8.17A2. 

The matching of the curves corresponding to the two expressions (4.6) and (4.7) 
occurs for h 2: 0-9 to within about 1% (figure 18). Thus an accurate calculation of 
Res (and consequently of the drag) is then possible in the whole domain 0 Q h < co. 

As we see it, the expression proposed by Uno & Kintner for Res is not suitable in 
the Hadamard regime; in the range of h where it can be used, the corresponding data 
are 20-30y0 undervalued. 

4.3.4. Experimental velocity Jield. Comparison with the theoretical results 
The evolutions with h of the experimental velocity along the flow axis and in the 

equatorial plane are given in figures 19 and 20; according to the curve, the distance r 
(evaluated from the origin) is normalized by either the axial or the equatorial bubble 
radius, R, and RE respectively. The following phenomena are verified: 

and experimental results, but from their graphics, it seems to be less than 10 yo. 
The authors did not give the exact value of the corresponding deviation between theoretical 
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FIGURE 19. Evolution with h of the velocity distribution dong the exterior flow axis. Experi- 
mental results: -0-, A = 0.21; -+-, A = 0.39; -0-, A = 0.48; -@-, h = 0.68; -4-, h = 
0.88; - V - , h  = 1.3. 

1.5 X = 0.75 (XE = 0.62) 

X = 0.68 (XE = 0.59) s" 
3 

I 

0.50 
I 2 3 4 5 

T I R E  

FIGURE 20. Evolution with h of the velocity distribution in the extenor 
Experimental results: -0- , h = 0.21; -+-, h = 0.39; - b-, h = 0.48; -0- 
A = 0.75; - A-, h = 0.88. 

equatorial 
-, h = 0.68 

plane. 
; - A-, 

(a) The length of the disturbed domain (along the axis) expressed with respect to 
RA decreases as h increases. For instance, the velocity again takes (within 1%) the 
unit value CJ, for the distances 3.4RA, 2.4R, and I-9RA respectively, for h = 0.39, 
0.68 and 0.88. In an unbounded region the comparable distance is lOOR ! This result 
can be connected to the fact that flow disturbances die away exponentially along the 
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1 7, 3 4 

rIRA 

FIGURE 21. Velocity distribution along the exterior flow axis for h = 0 48 (AA = 0.54). -, 
theoretical results (spherical bubble) ; , experimental results. 

1.4 I 1 

FIGURE 22. 
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‘5. 
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1 . 1  
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rlRE 
Velocity distribution in the exterior flow equatorial plane for h = 0.48 
-, theoretical results (spherical bubble) ; , experimental results. 

0.46). 

tube. As we have mentioned, the calculation technique proposed in $3.1 is based 
upon this property. 

(b) The relative velocities of the liquid particles in contact with the bubble surface 
are not equal to zero as in the case of a rigid body; the experimental results confirm the 
theoretical analysis: these surface velocities increase from the pole (stagnation point) 
to the equator; they also increase with wall proximity. Thme velocities can be import- 
ant: for A > 0-35 they become greater, in the equatorial plane, than the terminal speed 
U, of the bubble. But these velocities are difficult to measure because of the reflections 
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FIQTJRE 23. Evolution with h of the velocity distribution in the exterior flow equatorial plane. 
- , theoretical results (cylindrical bubble). Experimental results: +, A = 0.48 ( h ~  = 0.46); 
A, h = 0.75 ( h . ~  = 0.62); 0,  h = 0.82 ( h ~  = 0.64). 

of light from the bubble surface and this effect becomes more important as the bubble 
size increases with respect to the tube diameter. 

(c) In the equatorial plane, the curves present a maximum that becomes closer to 
the bubble as A increases (figure 20); for the limiting case of a cylindrical bubble the 
velocity is a maximum on the bubble surface. 

On the other hand, the comparison between our theoretical and experimental 
results points out that the experimental velocity fields are very well represented 
(better than 2%) by the calculated fields: for h < 0.25 with the spherical bubble 
model and for A 2 0.90 (in the equatorial plane) with the cylindrical bubble model. 
This last remark agrees with the observations of Goldsmith & Mason (1962) which 
show a good correlation between the experiment and the cylindrical bubble hypothesis 
when the bubble length is at least twice the tube radius, i.e. in our case from h N 1. 
Unfortunately, when h c 1 it is not possible to establish comparisons with other 
results because, to our knowledge, no similar investigation has been undertaken. 

For h = 0-48 (i.e. A, = 0.46 and A, = 0.54), it is shown (figures 21 and 22) how the 
experimental velocities depart (4 yo in average only) from the theoretical results 
obtained for a spherical bubble whose radius corresponds to 0.54 for the velocity on 
the flow axis (figure 21) and to 0.46 for the velocity in the equatorial plane (figure 22). 
In particular, it is seen that the deformation of the real bubble involves an increasing 
of the axial and surface velocities. 

Figure 23 presents the evolution with A of the difference between the experimental 
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and theoretical velocity distributions outside the bubble in the equatorial plane of 
the flow when, in the calculations, the bubble is supposed cylindrical. 

Finally, it is to be noticed that the experimental characteristics put in a non- 
dimensional form (shape of the bubble, velocity field, wall correction factor) are the 
same for equal values of A, even if the experiments have been carried out in tubes of 
different diameters. In particular, all the data relative to the wall coeficient Res lie, 
plotted as a function of A, on a single curve. Since Res is directly related to the 
Poiseuille number Ps (Res = 1/12Ps), it  appears immediately that Ps is also a func- 
tion of h only. This remark confirms that, as was mentioned above, in our experiments 
the viscosity effects were dominant when compared with the inertial and superficial 
tension effects and so the Poiseuille number was effectively the characteristic group 
for similarity. 

On the other hand, if the Poiseuille number is referred to  the tube diameter, we find 
that it tends towards a limit (0.0100) when h is increasing beyond unity. In  our experi- 
ments relative to these cases, the Etvos number Eo (calculated with RE) was about 
4 x lo2, so this limiting value is in good agreement with the constant value (0.0096) 
empirically proposed by White & Beardmore (1962) for Eo > 70. 

5. Conclusion 
The problem of the effects of the wall upon creeping flow induced by the translation 

of a fluid body along the axis of a vertical tube, filled with a quiescent and highly 
viscous liquid, has been considered both theoretically and experimentally. 

The theoretical study allowed us, in particular, to establish some comparisons 
between the cases of rigid, liquid and gaseous spheres. Thus, it has been pointed out 
that the domain perturbed by the body (as has been defined above) is extending all 
the more as the body viscosity is higher: the domain perturbed by a gaseous bubble 
is less extended than the one perturbed by a solid sphere. On the other hand, the wall 
proximity causes a very strong concentration of the disturbance, for example, for a 
gaseous sphere (or a solid sphere) whose radius is half that of the tube radius, the 
axial dimension of the perturbed domain is 33 times (or 45 times) shorter than it 
would be in an unbounded medium. This concentration of the perturbation gives rise 
to an increase in the velocity gradients all around the body and then of the drag that 
the body experiences and this effect becomes larger as the body viscosity increases. 
Consequently the differences between the drags experienced by geometrically identi- 
cal bodies resulting from their differing natures (solid, liquid or gaseous) are still 
exaggerated by the wall effect. 

The experimental results, obtained in the case of an air bubble for Re < 0.2, 
Eo > 170,  M o  2: 109 ,  confirm that, in these conditions, superficial velocities really 
exist on the bubble surface and are increased by the wall proximity. Furthermore, the 
way the bubble loses its spherical shape, when its size is increasing compared with the 
tube radius, has been described; from the empirical formulae that we proposed, it is 
possible to calculate this shape, as well as the terminal speed of the bubble, for the 
whole variation domain of the bubble-to-tube radius ratio A ,  including the spherical 
and the cylindrical shapes. So it appears that the terminal speed is affected by the 
wall effect much sooner than the shape is, since for A = 0.20 when the bubble retains 
a good spherical shape its terminal speed is already 39 yo less than the speed it would 
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have in an unbounded medium. In the Hadamard regime, for the wall effect to be 
reduced to 1 yo only, the minimal radius of the tube must be 150 times greater than 
the bubble radius ! 

Concerning the hydrodynamic field, the comparisons between theoretical and experi- 
mental results have shown a good agreement with the ‘ sphere-tube’ flow (or ‘ cylin- 
der-tube’ flow) as far as the bubble retains effectively a spherical shape, i.e. for 
h < 0.25 (or when its becomes cylindrically shaped, for h > 1). So it appears that the 
data given by our visualization technique were sufficiently accurate to allow us to 
perfect an efficient calculation method providing not only the drag coefficient but also 
the complete hydrodynamic field in the whole domain perturbed by the body. Later 
we hope that it will be possible to extend this method to calculate the flow around a 
real deformed bubble. 

On the other hand, we shall continue the experimental work on drops and bubbles 
examining the respective influences of the inertial effects and of an eventual elasticity 
of the suspending liquid. An example of the first photographs that we obtain in this 
last case has been presented in the report of the Euromech Colloquium 98 (Van 
Vijngaarden & Vossers 1978). 

The authors are grateful to Professor J.-M. Bourot, Director of the Fluid Mechanics 
Laboratory of Poitiers, for his useful suggestions. They also wish to thank R. Bouard, 
J.-R. Defaye, P. Falaise and G .  Branger for their help respectively in drawing the 
graphs, translating this text into English and elaborating efficient experimental 
apparatus and techniques. 
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